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Abstract—Descriptor representations are considered that are
given by (E, A, B,C, D) with D=0. Minimality under
external equivalence is characterized in terms of the matrices
E, A, B and C. Also, transformations are given by which
minimal (E, A, B, C) representations are related under
external equivalence. The transformations turn out to be
more simple than in the “D#0” case. Algorithms for
rewriting an (E, A, B, C, D) representation in (E, A, B, C)
form are also given. Finally, a realization procedure is
presented for obtaining a minimal (E, A, B, C) repre-
sentation for a system that is given in polynomial matrix
fractional form.

1. Introduction and preliminaries
IN THIS PAPER we consider linear time invariant systems
represented by

oEE=AE + Bu,
y=C&

Here the variables y, u and & are functions of time (te€T)
that take values in the output space Y, the input space U and
the descriptor space X, respectively. Further, ¢ denotes
differentiation or shift, depending on whether one works in
continuous time (T=R,) or discrete time (T=2Z,). The
codomain of the mappings E and A will be denoted by X,
(equation space). The matrices E and A are not assumed to
be square.

The above representation is a specific form of the so-called
descriptor representation

OEE = A + Bu,
y=C&+ Du.

The only difference between (1.1) and (1.2) is the absence of
a direct feedthrough term D in (1.1). Unlike the standard
state space case (E =1I), one here has a choice to consider
either (E, A, B,C) or (E, A, B, C, D) representations.
Indeed, (E, A, B, C, D) representations can be rewritten in
(E, A, B, C) form and vice versa, as we will see in Section 3
of this paper. In some situations (E, A, B, C) representations
are preferred: two-point boundary-value descriptor systems
(Nikhoukhah et al., 1987) are usually written in (E, A, B, C)
form because of the time-reversible character of such
systems: a symmetric representation is preferred to a
non-symmetric one. However, the absence of a D term
usually leads to a larger descriptor state space: the direct
feedthrough term is related to the ‘“non-dynamic’ variables

(1.1)

(1.2)
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of the system, as was first pointed out in Verghese et al.
(1981).

The aim of this paper is the following. First, we consider
the question under which conditions an (E, A, B, C)
representation of a system is minimal among all other
equivalent (E, A, B, C) representations. Here a descriptor
representation is defined to be minimal if the rank of E, the
column defect of E (dimker E) and the row defect of £
(codim in E) are minimal. We will give a characterization of
minimality in terms of the matrices E, A, B and C. We will
also give the complete set of transformations by which
minimal equivalent (E, A, B, C) representations can be
transformed into each other. Finally, we show how a minimal
(E, A, B, C) realization can be constructed, starting from a
system description in polynomial matrix fractional form.

The equivalence concept that we will use throughout the
paper is that of so-called “external equivalence”. Systems are
called externally equivalent if their induced ‘‘behaviours” are
the same. Here the behaviour of a system consists of the time
trajectories of the input and output variables (the “external
variables™) that arise from the system representation. For
more details and motivation the reader is referred to
(Willems, 1983, 1986; Kuijper and Schumacher, 1990b). It
should be noted that the set of time trajectories of the output
variables that are not influenced by the input variables (the
“uncontrolled behaviour”) remains invariant under external
equivalence. This constitutes one of the main differences
between external equivalence and so-called transfer equiv-
alence where the invariant is the transfer function instead of
the behaviour.

In the development below, a promineant role is played by
the so-called pencil representation:

oGz = Fz,
y=H,z, (1.3)
u=H,z.

Here F and G are linear mappings from Z to X, where Z is
the space of internal variables and X is the equation space. It
is shown in Willems (1986) and Kuijper and Schumacher
(1990a) that a minimal pencil representation can be realized
directly from the behaviour of the system in a natural way.
Here the pencil representation is called minimal if both
dim Z and dim X are minimal. In the next section we present
algorithms for rewriting a pencil representation in
(E, A, B, C) form and vice versa. These algorithms are used
for deriving minimality results and results on the
transformation group in Section 3. In Section 4 we will give a
procedure for realization into (E, A, B, C) form. The
procedure will be illustrated by an example.

2. Relation with pencil form
The next algorithm gives a procedure for rewriting a pencil
representation in (E, A, B, C) form.

Algorithm. 1. Let a pencil representation be given by
(F, G, H,, H,). Decompose the internal variable space Z as
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Z,DZ, DZ,DZ; where Z;=kerGNkerH, Z,0Z;=
ker GNkerH,, Z,® Z,® Z;=ker G. Accordingly, write

G=[G, 0 0 0], F=[F, R E F]
Hy=[Hy0 H, 0 O]) Hu=[Hu0 Hul Hu2 0]'

y1
Then the matrices G, and H,; have full column rank. Also,
the matrix H,, has full column rank, and by renumbering the
u-variables if necessary, we can write

[, ma= ], =[] o
HuO_I:HZO ’ Hul I{21 » Hu2 H22 ’ ( )

where H,, is invertible (or empty, if kerGNkerH,c
ker H,). Define descriptor matrices by

(333 aelh B 5L oe[ )

@.1)

0 00 Ho, H, © -1 H,
C=[H,, H, 0], 2.3)

with
E) =FK- FzHi-lezor
F=F, - RHZ Hy,
Hm =Ho— HuHi_lezo:
Hu =Hy, — HHp'Hyy,
E=FEH3,
HIZ = H12H;21-

(2.4)

Vice versa, an (E, A, B, C) representation can be
rewritten in pencil form by applying the algorithm of Kuijper
and Schumacher (1990b) which transforms (E, A, B, C, D)
representations to equivalent pencil representations. In
Kuijper and Schumacher (1990b) it is shown that this
algorithm preserves minimality: minimal (E, A, B, C, D)
representations are transformed to minimal pencil repre-
sentations. Surprisingly, the algorithm (that will be called
Algorithm 2 in the sequel) also preserves minimality for
(E, A, B, C) representations, as will be shown later.

We will now prove that applying Algorithm 1 to a minimal
pencil representation leads to an externally equivalent
(E, A, B, C) representation that is minimal. For this purpose
we first have to explore the concept of minimality under
external equivalence for (E, A, B, C) representations. In the
following we will present lower bounds for some of the
indices that have to be minimized. These involve a certain
invariant subspace WOc W (=Y ® U) (see Willems, 1986;
Kuijper and Schumacher, 1990a). Intuitively speaking, the
subspace W is spanned by the minimum number of “driving
variables” of the system; when W?° coincides with the input
space we are dealing with a system with a strictly causal
input-output structure. A definition of W° will be given in
Section 4. In the following lemma W? is expressed in terms
of the matrices E, A, B and C. The mapping ny:W—Y
denotes projection onto Y along U.

Lemma 2.1. Let a descriptor representation be given by
(E, A, B, C). Then necessary conditions for (E, A, B, C) to
be minimal under external equivalence are

(i) [E B]is surjective,

(i) [ET CT]7 is injective.

Moreover, if (i) and (ii) hold we have

UNW°= B~ '[im E], 2.5)
yW?° = Clker E). (2.6)

Proof. The fact that conditions (i) and (ii) are necessary for
minimality is proved in Kuijper and Schumacher (1990a):
Lemma 7.2 and Lemma 7.3 of that paper are also valid for
(E, A, B, C) representations. The other statements follow
from arguments that are analogous to those in the proof of
Lemma 3 of Kuijper and Schumacher (1990b).

From the proofs of Lemma 7.2 and Lemma 7.3 in Kuijper
and Schumacher (1990a) we immediately have the following
corollary.

Corollary 2.2. Let a descriptor representation be given by
(E, A, B, C). Then we have

(i) dimker E = dim (s, W?),

(ii) codim im E = codim (U N W°).

We are now ready for the main theorems of this section.

Theorem 2.3. Let (E, A, B,C) be a descriptor repre-
sentation that results from applying Algorithm 1 to a pencil
representation, given by (F, G, H,, H,). Then the two
representations are externally equivalent. Furthermore if
(F, G, H,, H,) is minimal then (E, A, B, C) is also minimal.

Proof. The external equivalence of the two representations
follows as in the proof of Lemma 1 in Kuijper and
Schumacher (1990b).  Further, the minimality of
(F, G, H,,H,) implies that rank G is minimal. The
minimality of rank E now follows immediately since in both
Algorithm 1 and Algorithm 2 we have that rank E = rank G.
The minimality of (F, G, H,, H,) also implies that G is
surjective and that [GT H] HI]" is injective (Proposition
1.1 in Kuijper and Schumacher (19902)) from which it
follows that [E B] is surjective and [ET CT]" is injective
(Zy={0}). From Lemma 2.1 it now follows that the lower
bounds in Corollary 2.2 are reached so that we can conclude
that the representation (E, A, B, C) is minimal under
external equivalence.

Theorem 2.4. Let (F, G, H,, H,) be a pencil representation
that results from applying Algorithm 2 to an (E, A, B, C)
representation. Then the two representations are externally
equivalent. Furthermore if (E, A, B, C) is minimal then
(F, G, H,, H,) is also minimal.

Proof. The external equivalence of the representations has
been proven in Lemma 2 of Kuijper and Schumacher
(1990b). Next, by Lemma 2.1, the minimality of (E, A4, B, C)
implies that [E B] is surjective. It can then be concluded that
G is surjective. Furthermore the minimality of rank G
follows as in the proof of the previous theorem. Finally we
have

dim ker G = dim ker E + dim B~ '[im E],
=dim (xyW°) + dim (U N W9),
= dim W°. @7

From Kuijper and Schumacher (1990a) we may now
conclude that (F, G, H) is minimal.

3. Minimality and the transformation group

Theorem 3.1. Let a descriptor representation be given by
(E, A, B, C). The representation is minimal under external
equivalence if and only if the following conditions hold:

(i) [E B] is surjective,

(ii) [ET CT]" is injective,

(i) [sET — AT CT]7 has full column rank for all s € C.

Proof. From Lemma 2.1 it follows immediately that
conditions (i) and (ii) should hold. In order to prove (iii) we
apply Algorithm 2 to the representation. According to
Theorem 2.4 the pencil representation (F, G, H,, H,) that is
obtained in this way is minimal. This implies that
[sGT-FT HT HI)" should have full column rank for all
s € C (Proposition 1.1 in Kuijper and Schumacher (1990a)).
It is then easily seen that condition (iii) should hold.
Conversely, when Algorithm 2 is applied to an (E, A, B, C)
representation for which conditions (i)-(iii) hold, it is easily
seen that the resulting pencil representation satisfies the
conditions of Proposition 1.1 in Kuijper and Schumacher
(1990a) and is therefore minimal. From this it follows that
rank E is minimal. Furthermore since conditions (i) and (ii)
are assumed to be satisfied we can use Lemma 2.1 to derive

dim ker E(=dim C[ker E]) = dim 7, W°, 3.1
and
codim im E(=codim B~ '[im E]) = codim U N W°. (3.2)

By Corollary 2.2 this proves that the (E, A, B, C)
representation is minimal.



Brief Paper 635

Remark 3.2. In the above theorem there is no requirement
on the absence of non-dynamic variables (A[ker E] < im E)
as in the analogous theorem for (E, A, B, C, D) repre-
sentations (Theorem 4 in Kuijper and Schumacher
(1990b)). This is not surprising since for (E, A, B, C)
representations the nondynamic variables cannot be elimin-
ated: there is no D term in which they can be incorporated.

Next, we present two algorithms that will clarify the
relation between (E, A, B, C) and (E, A, B, C, D) repre-
sentations. The first algorithm gives a procedure for rewriting
an (E, A, B, C, D) representation in (E, A, B, C) form while
the reverse procedure is given by the second algorithm.

Algorithm 3. Let a descriptor representation be given by
(E,A,B,C, D). Let V=[V, V,] be an invertible matrix
such that

DV=D[V, V,=[D, 0], (3.3)

where D, is injective. Let T =[TT T1]7 be the inverse of V.
Define &,=Tu. _Then Du=DE, Now define a repre-
sentation (E, A, B, C) by

(6 ) a=[3 ) 5-[5) ete

Theorem 3.3. Let (E,A,B,C) be a descriptor repre-
sentation that results from applying Algorithm 3 to an
(E, A, B, C, D) representation. Then the two repre-
sentations are externally equivalent.

Proof. The operations that are involved in the algorithm
clearly do not affect the behaviour: variables are merely
written in another way. From this the external equivalence of
the two representations follows.

Algorithm 4. Let a descriptor representation be given by
(E, A, B, C). Decompose the descriptor space X, as
X, ® Xy ® X, where Xy5=A"'[im E]Nker E and X, ®
X3 = ker E. Decompose the equation space X, as X,, ® X,
where X,, =im E. Accordingly write

I 00 Ay, A A
E= A=|"n 12 13}
lo o o =li 22 W)

B )
B=[B'], c=[c, C, Ci.

2

Then the matrix A,, is injective. Choose an appropriate basis
in X,,, such that w.r.t. this basis we have

A mes[]) me[B]
an=[3] aa=ly) m=[52] oo

Now define a representation (E, A, B, €, D) by

E=[1 O] Az[All_AIZAZII A13]
0 0l A o
212 (3.5)

B=[BI—AIZBZl]v C=[C1_C2A211 Gl 5=_C232|~

B22

Theorem 3.4. Let (E,/i,B, C, D) be a descriptor repre-
sentation that results from applying Algorithm 4 to an
(E, A, B, C) representation. Then the two representations
are externally equivalent. Furthermore if (E, A, B, C) is
minimal then (E, A, B, C, D) is also minimal.

Proof. The external equivalence of the two representations
follows as in the proof of Lemma 1 in Kuijper and
Schumacher (1990b). The preservation of minimality is
proven by using Theorem 3.1.

Next, we ask ourselves by which transformations minimal
equivalent (E, A, B, C) representations are related. The next
theorem involves the concept of restricted system equivalence
which was defined by Rosenbrock (1974).

Theorem 3.5. Let (E, A, B, C) and (E, A, B, C) be descrip-
tor representations that are minimal under external
equivalence. Then the two representations are externally
equivalent if and only if they are restricted system
equivalent, i.e. there exist invertible matrices M and N such
that

[M 0][:E—A —B]=[sEC—A —Oé]{zv 0

0 I C 0 0 I]' (3.6)

Proof. The proof is analogous to the proof of Theorem 5 of
Kuijper and Schumacher (1990b). The input space U should
now be decomposed in a different way, namely as
UNW°@® U,. Using the notation of the proof of Theorem 5
of Kuijper and Schumacher (1990b) we now have D,=0,
D, =0 and (resulting from the fact that C, is injective)
Tg=0. This implies that X =0 and Y =0, i.e. that the
representations are restricted system equivalent.

Remark 3.6. The above theorem tells us that for minimal
(E, A, B, C) representations the only operations that are
allowed under external equivalence are ‘‘change of basis™ in
X, and in X,. Therefore the situation for (E, A, B, C)
representations parallels the standard state space case:
minimal equivalent representations are related by “simila-
rity”. Note that this does not hold for minimal
(E, A, B,C, D) representations: they are related by
operations of strong equivalence (Theorem 5 in Kuijper and
Schumacher (1990b)).

4. A realization procedure

In Kuijper and Schumacher (1990a) we presented a
method for obtaining a minimal (E, A, B, C, D) repre-
sentation for a system described by equations of the form

R(o)y + Ry(0)u =0, 4.1

where R (s) and R,(s) are polynomial matrices of sizes k X p
and k X m, respectively. In this section we will indicate what
changes should be made in the procedure in order to arrive
at a (minimal) (E, A, B, C) representation. We will use the
notation of Section 8 of Kuijper and Schumacher (1990a).

As in Kuijper and Schumacher (1990a) we may assume
that [R,(s) R,(s)] is row proper. This means that we can
write

[Ri(s)  Ry($)]= A(s)B(s), (4.2)

where B(s)=[B,(s) By(s)] is right bicausal, and A(s)=
diag (s*1,. .., s*%). We note here that [B,(®) B,(«)] is the
“leading row coefficient matrix” of [R,(s) R,(s)] and that
the subspace W can be defined as Kuijper and Schumacher
(1990a)

WO=ker [By(=) By)]. (4.3)

In the realization method of Kuijper and Schumacher
(1990a) a certain choice is made for a constant matrix B such
that B(s)=[B7(s) BT]" is bicausal. It was shown that this
choice naturally leads to a realization in (E, A, B, C, D)
form. Here our choice of B has to be different since our
objective is to construct an (E, A, B, C) realization. First
note that we have

U N W= ker B,(). L4

This enables us to decide which u-variables are driving
variables. By renumbering the inputs if necessary, we may
assume that

By(®) =[By(=) B3(«)), (4.5)

where BX() has full column rank, and the columns of B3()
depend linearly on those of Bj(x). Let B3(=) have m,
columns; note that m,<p + m — k and that we have m, =0
when dim ker B,() =0. It is easily verified that a matrix B

which completes B(=) to an invertible matrix may be found
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of the form (. 0 0). We then have that B()! is of the

form 00 7
* # ()
B@) =% % x|, (4.6)
00 1

where the partitioning is (p +m, +my) X (k+(p +m;—
k)+m,) (m, is the number of columns of Bj(»)). The
realization procedure of Kuijper and Schumacher (1990a)
then leads to equations of the following form:

0zy= Ag2y+ Bz, + B2y, 4.7
y = Hyyzg + Ho 21, (4.8)
u, = Hyzo + Hy z, + Hy32,, (4.9)
Uy =1,. (4.10)

This can obviously be rewritten in (E, A, B, C) form:
1 0)(2‘,> (A(, B, )(z,,) ( 0 Bz)(u‘)
o = + , (4.1
(O 0/1z, H,, Hy,/\z =1 Hy/\uy ( )

Z

y =[He Hml< Z”)‘ (4.12)
1

Here rank E =n where n denotes the sum of the minimal

row indices (kx;) of [R,(s) Ry(s)]. As in Kuijper and

Schumacher (1990a) it can be verified that the above

(E, A, B, C) realization is minimal.

Remark 4.1. Let us assume that R,(s) and R,(s) are left
coprime so that we can compare our realization procedure
with procedures under transfer equivalence, such as in
Wimmer (1981) and Conte and Perdon (1982). We are then
essentially starting from a transfer function T(s)=
R '(s)R,(s) given as a polynomial left coprime factorization.
In both Wimmer (1981) and Conte and Perdon (1982) a
minimal (E, A, B, C) representation is obtained by splitting
the finite and infinite frequencies. In the resulting
(E, A, B, C) representation the matrix £ has the form
((I) (.)) (thc matrix A has the form (; 2)) In contrast,
our procedure does not split finite and infinite frequencies
10 hus iding 2
0 0)) thus providing a
more direct link between polynomial and state space
representations. This makes it easier to translate system
properties from polynomial terms to state space terms and
vice versa. Note that it follows from Theorem 3.5 that the
two representations are restricted system equivalent.
We conclude this section with an example.

Example 4.2. Take

(leading to a matrix £ of the form (

s+2 0 s+l 0 1 0
[Ri(s) Ry)l=| 0 s=1 0 3 s s+4], (4.13)
s 0 0 s 0 0

corresponding to three outputs and three inputs. The leading
row coefficient matrix

101000

010011},

000100

has fuli row rank, so that the given matrix R(s) is alrcady
row reduced; also m,=1 and the inputs need not be
renumbered. We see that the sum of the minimal row indices
of R(s) is four and that the rank of B,(=) (formed by the last
three columns of the matrix above) is two; so, a descriptor
representation (E, A, B, C) will be minimal if and only if the
matrix £ has size 6 X 6 and rank 4.
Applying the above procedure we take

1000 0 0

B={0 1000 0
000001

, (4.14)

which leads to

B(=) '= (4.15)

Consequently, we get the (E, A, B, C) realization

-1 -1 0 0 -1 1
0 0 -3 0 0 1

L 0 0\ fz O 0 01 -1 0
ol 000Nz g=l 4 4 g0 0 o
00 07z 0 0 10 0 0
0 1 00 0 -1
00
0 0 -4
2 000/,
x|z |+ 0 0 () w, |,
Z, ~1 0 0 \u,
0 -1 -1

y={0o 000 o 1}{z] (4.16)

Remark 4.3. In the above example the column defect of
B (=) is equal to 1. Therefore (see Kupper and Schumacher
(1990a)) a minimal (£, A, B, ¢, D) rcalization would have
an E-matrix of size 5 5 (and again rank 4). Indeed, there
i$ one nondynamic vanable in the above (£, 4, B, ()
realization, namely the vaniable 2z, which can be incorporated
ina D term.

5. Conclusions

In this paper we have characterized the mmimality of an
(E, A, B, C) representation in terms of the matrices F, A, B
and C. The conditions are the wame as for (£, A, B, C, D)
representations, except that there v no requirement on the
absence of non-dynamic modes.

We also gave a procedure for realizing systems given by
autoregressive equations o mimmal (£, A, B, ) form, It is
proven that such a realization 15 unique up to operations of
restricted system equivalence. Thus the transformation group
consists of isomorphisms and 1s therefore more simple than
in the case of (£, A, B C, D) representations. In some
situations this might be a reason 1o use an (F, A, B, ()
representation rather than an (LA B, C D)
representation.
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